Sweet Spot of Intermolecular Coupling in Crystalline Rubrene: Intermolecular Separation to Minimize Singlet Fission and Retain Triplet–Triplet Annihilation
Author:
Affiliation:
1. Institute of Photonics and Nanotechnology, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
2. Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
Funder
Lietuvos Mokslo Taryba
Publisher
American Chemical Society (ACS)
Subject
Surfaces, Coatings and Films,Physical and Theoretical Chemistry,General Energy,Electronic, Optical and Magnetic Materials
Link
https://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.2c04572
Reference60 articles.
1. Challenges, progress and prospects in solid state triplet fusion upconversion
2. Efficient NIR-to-vis photon upconversion in binary rubrene films deposited by simplified thermal evaporation
3. Exploiting Singlet Fission in Organic Light‐Emitting Diodes
4. Achievement of High-Level Reverse Intersystem Crossing in Rubrene-Doped Organic Light-Emitting Diodes
5. Vacuum processed large area doped thin-film crystals: A new approach for high-performance organic electronics
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Killer Phonon Caught: Femtosecond Stimulated Raman Spectroscopy Identifies Phonon-Induced Control of Photophysics in Rubrene Derivatives;Journal of the American Chemical Society;2024-07-11
2. Electronic Couplings for Triplet–Triplet Annihilation Upconversion in Crystal Rubrene;Journal of Chemical Theory and Computation;2024-05-14
3. Computational Discovery of Intermolecular Singlet Fission Materials Using Many-Body Perturbation Theory;The Journal of Physical Chemistry C;2024-05-01
4. Tailoring the optical properties of rubrene films through epitaxy-induced amorphous-to-crystal transition;Journal of Materials Chemistry C;2024
5. Origin of the Delayed Fluorescence by Triplet–Triplet Annihilation in Solids with a Power Law Exponent of between −1/2 and −1;The Journal of Physical Chemistry C;2023-05-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3