Finding Communities in Credit Networks

Author:

Bargigli Leonardo1,Gallegati Mauro2

Affiliation:

1. Scuola Normale Superiore , Pisa , Italy

2. Università Politecnica delle Marche , Dipartimento di Scienze Economiche e Sociali , Ancona , Italy

Abstract

Abstract In this paper the authors focus on credit connections as a potential source of systemic risk. In particular, they seek to answer the following question: how do we find densely connected subsets of nodes within a credit network? The question is relevant for policy, since these subsets are likely to channel any shock affecting the network. As it turns out, a reliable answer can be obtained with the aid of complex network theory. In particular, the authors show how it is possible to take advantage of the ‘‘community detection’‘ network literature. The proposed answer entails two subsequent steps. Firstly, the authors verify the hypothesis that the network under study truly has communities. Secondly, they devise a reliable algorithm to find those communities. In order to be sure that a given algorithm works, they test it over a sample of random benchmark networks with known communities. To overcome the limitation of existing benchmarks, the authors introduce a new model and test alternative algorithms, obtaining very good results with an adapted spectral decomposition method. To illustrate this method they provide a community description of the Japanese bank-firm credit network, getting evidence of a strengthening of communities over time and finding support for the well-known Japanese main ‘‘bank’‘ system. Thus, the authors find comfort both from simulations and from real data on the possibility to apply community detection methods to credit markets. They believe that this method can fruitfully complement the study of contagious defaults. Since network risk depends crucially on community structure, their results suggest that policy maker should identify systemically important communities, i.e. those able extend the initial shock to the entire system.

Publisher

Walter de Gruyter GmbH

Subject

General Economics, Econometrics and Finance

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3