Battery selection criteria for electric vehicles: techno-economic analysis

Author:

YÜCENURŞEN Alaattin1ORCID,SAMANCI Ahmet1ORCID

Affiliation:

1. NECMETTİN ERBAKAN ÜNİVERSİTESİ

Abstract

In this study, different battery types to be used in the conversion of a small and light (600-1000 kg) internal combustion engine vehicle into an electric vehicle were analyzed. The study was conducted to ensure that this vehicle is suitable for urban use and has a range of approximately 100 km. Each battery technology capacity is evaluated to be approximately 15 kWh. While performing the techno-economic analysis of different battery types, it was taken into account that they provide the necessary energy for about 10 years. Seven different battery technologies (lead-acid, gel, Ni-Cd, Li-Ion, LiFePo4, LiPo, Ni-MH) were used for comparison. In the analysis; price assessment in US Dollars ($), 10-year investment cost, weight and volume values, weight and volume values required to produce 1 kWh of energy were presented in tables. In addition to these, a review of battery life was made. Finally, the advantages and disadvantages of battery technologies compared to each other are given. As a result of the study, it was seen that the cheapest technology for a 10-year lifespan was lead-acid technology. It has been determined that lead-acid technology is 30% cheaper than the second cheapest gel technology and 82% cheaper than the most expensive technology, LiPo technology. In the study, it was revealed that the lightest technology was LiPo. It has been determined that this technology is 85% lighter than gel technology. Besides this information, data on cycle life, self-discharge, advantages and disadvantages are presented in tabular form.

Publisher

International Journal of Automotive Engineering and Technologies

Subject

General Materials Science

Reference43 articles.

1. Ünlü, N., Karahan, Ş., Tür, O., Uçarol, H., Özsu, E., Yazar, A., Turhan, L., Akgün, F., Tırıs, M. “Elektrikli Araçlar,” TÜBİTAK Marmara Araştırma Merkezi Enerji Sistemleri ve Çevre Araştırma Enstitüsü, Gebze, Turkey, 2003.

2. Sayın, A.A., Yüksel, İ. “Elektrikli Renault Fluence aracı, lityum- iyon bataryasının modellenmesi ve batarya yönetimi,” Mühendis ve Makine, 52, (616), 75-82, 2011.

3. Chan, C.C. “The rise & fall of electric vehicles in 1828–1930: lessons learned,” Proceedings of the IEEE, 101 (1), 206 – 212, 2013.

4. Can Güven, E., Gedik K., “Environmental Management of End-of-life Electric Vehicle Batteries” Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9 (2), 726-737, 2019.

5. Adedeji, B. P., “A Novel Method for Estimating Parameters of Battery Electric Vehicles,” Intelligent Systems with Applications 15, 1-31, 2022.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Utilizing an integrated AHP-COPRAS approach for battery selection in electric vehicles;International Journal of Automotive Engineering and Technologies;2023-12-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3