Identificando Classes de Atores por Meio da Análise de Redes de Variáveis

Author:

Rossoni LucianoORCID,Gonçalves Clayton PereiraORCID,Gonçalves AlexORCID

Abstract

A análise de redes sociais consiste em identificar atores (pessoas, empresas, países, entre outros), que são representados por nós, e seus respectivos relacionamentos (amizade, comunicação, trocas econômicas etc.), representados por arestas. A rede pode ser segmentada pautando-se na presença ou força dos relacionamentos, formando grupos de atores similares ou coesos. Ocorre que, em muitos casos, buscamos a similaridade de atores não por meio de relações sociais, mas por meio do compartilhamento de atitudes, crenças ou opinião, o que remete ao uso de variáveis convencionais. Neste artigo, nós propomos o uso da Análise de Classes Correlacionais (CCA) para avaliar o sistema de crenças políticas do eleitor brasileiro, que, por sua vez, são capturadas por meio de variáveis atitudinais. No nosso estudo, o método foi utilizado para identificar classes de atores que são similares por meio da avaliação de suas respostas a respeito de quatro dimensões das crenças políticas, as quais foram baseadas no modelo de Converse. Tendo como base um levantamento com 1.417 respondentes, identificamos três classes esquemáticas (Interesse de grupo, Ideólogos e Quase Ideólogos), as quais representam atores que compartilham crenças em comum sobre política partidária. O método que apresentamos aqui contribui para uma nova forma de se avaliar a similaridade entre atores considerando compartilhamento de crenças ou opiniões, algo limitado para métodos convencionais de análise de redes sociais.

Publisher

Universidade Estadual de Londrina

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3