A long-wave model for the surface elastic wave in a coated half-space

Author:

Dai H.-H.1,Kaplunov J.2,Prikazchikov D. A.3

Affiliation:

1. Department of Mathematics, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong

2. Department of Mathematical Sciences, SISCM, Brunel University, Uxbridge, UB8 3PH, UK

3. Department of Computational Mathematics and Mathematical Physics, Bauman Moscow State Technical University, Moscow, Russia

Abstract

The paper deals with the three-dimensional problem in linear isotropic elasticity for a coated half-space. The coating is modelled via the effective boundary conditions on the surface of the substrate initially established on the basis of an ad hoc approach and justified in the paper at a long-wave limit. An explicit model is derived for the surface wave using the perturbation technique, along with the theory of harmonic functions and Radon transform. The model consists of three-dimensional ‘quasi-static’ elliptic equations over the interior subject to the boundary conditions on the surface which involve relations expressing wave potentials through each other as well as a two-dimensional hyperbolic equation singularly perturbed by a pseudo-differential (or integro-differential) operator. The latter equation governs dispersive surface wave propagation, whereas the elliptic equations describe spatial decay of displacements and stresses. As an illustration, the dynamic response is calculated for impulse and moving surface loads. The explicit analytical solutions obtained for these cases may be used for the non-destructive testing of the thickness of the coating and the elastic moduli of the substrate.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3