Affiliation:
1. School of Naval Architecture and Marine Engineering, National Technical University of Athens, 9 Iroon Polytechniou street, 15780 Zografos, Greece
Abstract
Determining evolution equations governing the probability density function (pdf) of non-Markovian responses to random differential equations (RDEs) excited by coloured noise, is an important issue arising in various problems of stochastic dynamics, advanced statistical physics and uncertainty quantification of macroscopic systems. In the present work, such equations are derived for a scalar, nonlinear RDE under additive coloured Gaussian noise excitation, through the stochastic Liouville equation. The latter is an exact, yet non-closed equation, involving averages over the time history of the non-Markovian response. This non-locality is treated by applying an extension of the Novikov–Furutsu theorem and a novel approximation, employing a stochastic Volterra–Taylor functional expansion around instantaneous response moments, leading to efficient, closed, approximate equations for the response pdf. These equations retain a tractable amount of non-locality and nonlinearity, and they are valid in both the transient and long-time regimes for any correlation function of the excitation. Also, they include as special cases various existing relevant models, and generalize Hänggi's ansatz in a rational way. Numerical results for a bistable nonlinear RDE confirm the accuracy and the efficiency of the new equations. Extension to the multidimensional case (systems of RDEs) is feasible, yet laborious.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献