Boolean logic by convective obstacle flows

Author:

Bartlett S. J.12ORCID,Yung Y. L.1

Affiliation:

1. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA

2. Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan

Abstract

We present a potential new mode of natural computing in which simple, heat-driven fluid flows perform Boolean logic operations. The system comprises a two-dimensional single-phase fluid that is heated from below and cooled from above, with two obstacles placed on the horizontal mid-plane. The obstacles remove all vertical momentum that flows into them. The horizontal momentum extraction of the obstacles is controlled in a binary fashion, and constitutes the 2-bit input. The output of the system is a thresholded measure of the energy extracted by the obstacles. Due to the existence of multiple attractors in the phase space of this system, the input–output relationships are equivalent to those of the OR, XOR or NAND gates, depending on the threshold and obstacle separation. The ability to reproduce these logical operations suggests that convective flows might have the potential to perform more general computations, despite the fact that they do not involve electronics, chemistry or multiple fluid phases.

Funder

Caltech Division of Geological and Planetary Sciences

University of Washington

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3