Ascending rockets as macroscopic self-propelled Brownian oscillators

Author:

Srivastava Nilabh1,Tkacik Peter T.1,Keanini Russell G.1

Affiliation:

1. Department of Mechanical Engineering, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA

Abstract

High-fidelity numerical experiments and theoretical modelling are used to study the dynamics of a sounding-rocket-scale rocket, subject to altitude-dependent random wind and nozzle side loads and deterministic aerodynamic loading. This paper completes a series of studies that showed that Ornstein–Uhlenbeck (OU) rotational dynamics arise when random nozzle side loads dominate wind and aerodynamic loading. In contrast to the earlier work, this paper elucidates that under conditions where aerodynamic, wind and nozzle side loads are comparable, the rocket behaves as stochastic Brownian oscillator. The Brownian oscillator model allows straightforward interpretation of the complex rotational dynamics observed: three dynamical regimes—each characterized by differing balances between nozzle-side-load-induced torques, spring-like aerodynamic torques and mass flux damping torques—characterize rocket ascent. Further, the paper illuminates that in the limit where wind and aerodynamic loads are small, random mass flux variations exponentially amplify side-load-induced rotational stochasticity. In this practical limit, pitch/yaw dynamics are described by a randomly damped OU process; an exact solution of the associated Fokker–Planck equation can be obtained and used to compute, e.g. time-dependent pitch/yaw rate means and variances.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference55 articles.

1. Dynamics of a Variable-Mass, Flexible-Body System

2. Belyayev V. P. Beltadze T. G. Litovchenko V. P. Litvinova V. D. Lominadze V. P. Pinus N. Z. Sofiyev Ye M.& Shur G. N.. 1965 Some results of the experimental investigations of the atmospheric turbulence using radiosondes NASA Technical Translation Notes NASA TTF-246 pp. 1–68. Moscow Russia: Central Aerological Observatory.

3. Trajectory optimization for the Atlas/Centaur launch vehicle

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3