Global reduction of in situ CO 2 transfer velocity by natural surfactants in the sea-surface microlayer

Author:

Mustaffa Nur Ili Hamizah12ORCID,Ribas-Ribas Mariana2ORCID,Banko-Kubis Hanne M.2,Wurl Oliver2

Affiliation:

1. Institute for Chemistry and Biology of the Marine Environment, Carl Von Ossietzky Universität Oldenburg, 26382 Wilhelmshaven, Germany

2. Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky Universität Oldenburg, 26382 Wilhelmshaven, Germany

Abstract

For decades, the effect of surfactants in the sea-surface microlayer (SML) on gas transfer velocity ( k ) has been recognized; however, it has not been quantified under natural conditions due to missing coherent data on in situ k of carbon dioxide (CO 2 ) and characterization of the SML. Moreover, a sea-surface phenomenon of wave-dampening, known as slicks, has been observed frequently in the ocean and potentially reduces the transfer of climate-relevant gases between the ocean and atmosphere. Therefore, this study aims to quantify the effect of natural surfactant and slicks on the in situ k of CO 2 . A catamaran, Sea Surface Scanner (S 3 ), was deployed to sample the SML and corresponding underlying water, and a drifting buoy with a floating chamber was deployed to measure the in situ k of CO 2 . We found a significant 23% reduction of k above surfactant concentrations of 200 µg Teq l −1 , which were common in the SML except for the Western Pacific. We conclude that an error of approximately 20% in CO 2 fluxes for the Western Pacific is induced by applying wind-based parametrization not developed in low surfactant regimes. Furthermore, we observed an additional 62% reduction in natural slicks, reducing global CO 2 fluxes by 19% considering known frequency of slick coverage. From our observation, we identified surfactant concentrations with two different end-members which lead to an error in global CO 2 flux estimation if ignored.

Funder

H2020 European Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3