Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium

Author:

dell’Isola F.12,Giorgio I.12ORCID,Pawlikowski M.32,Rizzi N. L.42ORCID

Affiliation:

1. Dipartimento di Ingegneria Strutturale e Geotecnica, Università di Roma La Sapienza, Rome, Italy

2. International Research Center, M&MoCS, Cisterna di Latina, Italy

3. Institute of Mechanics and Printing, Warsaw University of Technology, Warsaw, Poland

4. Dipartimento di Architettura, Università degli studi Roma Tre, Rome, Italy

Abstract

The aim of this paper is to find a computationally efficient and predictive model for the class of systems that we call ‘pantographic structures’. The interest in these materials was increased by the possibilities opened by the diffusion of technology of three-dimensional printing. They can be regarded, once choosing a suitable length scale, as families of beams (also called fibres) interconnected to each other by pivots and undergoing large displacements and large deformations. There are, however, relatively few ‘ready-to-use’ results in the literature of nonlinear beam theory. In this paper, we consider a discrete spring model for extensible beams and propose a heuristic homogenization technique of the kind first used by Piola to formulate a continuum fully nonlinear beam model. The homogenized energy which we obtain has some peculiar and interesting features which we start to describe by solving numerically some exemplary deformation problems. Furthermore, we consider pantographic structures, find the corresponding homogenized second gradient deformation energies and study some planar problems. Numerical solutions for these two-dimensional problems are obtained via minimization of energy and are compared with some experimental measurements, in which elongation phenomena cannot be neglected.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 318 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3