Wrinkling in engineering fabrics: a comparison between two different comprehensive modelling approaches

Author:

Giorgio I.12ORCID,Harrison P.32,dell'Isola F.12ORCID,Alsayednoor J.3,Turco E.42ORCID

Affiliation:

1. DISG, Università di Roma La Sapienza, Rome, Italy

2. International Research Center, M&MoCS, L'Aquila, Italy

3. School of Engineering, University of Glasgow, Glasgow, UK

4. Department of Architecture, Design and Urban planning, University of Sassari, Alghero, Italy

Abstract

We consider two ‘comprehensive’ modelling approaches for engineering fabrics. We distinguish the two approaches using the terms ‘semi-discrete’ and ‘continuum’, reflecting their natures. We demonstrate a fitting procedure, used to identify the constitutive parameters of the continuum model from predictions of the semi-discrete model, the parameters of which are in turn fitted to experimental data. We, then, check the effectiveness of the continuum model by verifying the correspondence between semi-discrete and continuum model predictions using test cases not previously used in the identification process. Predictions of both modelling approaches are compared against full-field experimental kinematic data, obtained using stereoscopic digital image correlation techniques, and also with measured force data. Being a reduced order model and being implemented in an implicit rather than an explicit finite-element code, the continuum model requires significantly less computational power than the semi-discrete model and could therefore be used to more efficiently explore the mechanical response of engineering fabrics.

Funder

Engineering and Physical Sciences Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3