Affiliation:
1. Department of Biology, Miami University, Oxford, OH 45056, USA
2. Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
Abstract
Gut bacteria that produce urease, the enzyme hydrolysing urea, contribute to nitrogen balance in diverse vertebrates, although the presence of this system of urea-nitrogen recycling in Amphibia is as yet unknown. Our studies of the wood frog (
Rana sylvatica
), a terrestrial species that accrues urea in winter, documented robust urease activity by enteric symbionts and hence potential to recoup nitrogen from the urea it produces. Ureolytic capacity in hibernating (non-feeding) frogs, whose guts hosted an approximately 33% smaller bacterial population, exceeded that of active (feeding) frogs, possibly due to an inductive effect of high urea on urease expression and/or remodelling of the microbial community. Furthermore, experimentally augmenting the host's plasma urea increased bacterial urease activity. Bacterial inventories constructed using 16S rRNA sequencing revealed that the assemblages hosted by hibernating and active frogs were equally diverse but markedly differed in community membership and structure. Hibernating frogs hosted a greater relative abundance and richer diversity of genera that possess urease-encoding genes and/or have member taxa that reportedly hydrolyse urea. Bacterial hydrolysis of host-synthesized urea probably permits conservation and repurposing of valuable nitrogen not only in hibernating
R. sylvatica
but, given urea's universal role in amphibian osmoregulation, also in virtually all Amphibia.
Funder
Sigma Xi
National Science Foundation
Subject
General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献