Abstract
During locomotion, animals rely on multiple sensory modalities to maintain stability. External cues may guide behaviour, but they must be interpreted in the context of the animal's own body movements. Mechanosensory cues that can resolve dynamic internal and environmental conditions, like those from vertebrate vestibular systems or other proprioceptors, are essential for guided movement. How do afferent proprioceptor neurons transform movement into a neural code? In flies, modified hindwings known as halteres detect forces produced by body rotations and are essential for flight. However, the mechanisms by which haltere neurons transform forces resulting from three-dimensional body rotations into patterns of neural spikes are unknown. We use intracellular electrodes to record from haltere primary afferent neurons during a range of haltere motions. We find that spike timing activity of individual neurons changes with displacement and propose a mechanism by which single neurons can encode three-dimensional haltere movements during flight.
Funder
Air Force Office of Scientific Research
Case Western Reserve University
Subject
General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献