Diversity change during the rise of tetrapods and the impact of the ‘Carboniferous rainforest collapse’

Author:

Dunne Emma M.1ORCID,Close Roger A.1,Button David J.23ORCID,Brocklehurst Neil4ORCID,Cashmore Daniel D.1,Lloyd Graeme T.5ORCID,Butler Richard J.1ORCID

Affiliation:

1. School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK

2. Paleontology Research Lab, North Carolina Museum of Natural Sciences, 11 W Jones St, Raleigh, NC 27607, USA

3. Department of Biological Sciences, North Carolina State University, 3510 Thomas Hall, Campus Box 7614, Raleigh, NC 27695, USA

4. Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany

5. School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK

Abstract

The Carboniferous and early Permian were critical intervals in the diversification of early four-limbed vertebrates (tetrapods), yet the major patterns of diversity and biogeography during this time remain unresolved. Previous estimates suggest that global tetrapod diversity rose continuously across this interval and that habitat fragmentation following the ‘Carboniferous rainforest collapse’ (CRC) drove increased endemism among communities. However, previous work failed to adequately account for spatial and temporal biases in sampling. Here, we reassess early tetrapod diversity and biogeography with a new global species-level dataset using sampling standardization and network biogeography methods. Our results support a tight relationship between observed richness and sampling, particularly during the Carboniferous. We found that subsampled species richness initially increased into the late Carboniferous, then decreased substantially across the Carboniferous/Permian boundary before slowly recovering in the early Permian. Our analysis of biogeography does not support the hypothesis that the CRC drove endemism; instead, we found evidence for increased cosmopolitanism in the early Permian. While a changing environment may have played a role in reducing diversity in the earliest Permian, our results suggest that the CRC was followed by increased global connectivity between communities, possibly reflecting both reduced barriers to dispersal and the diversification of amniotes.

Funder

H2020 European Research Council

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3