True recognition of nestlings by hosts selects for mimetic cuckoo chicks

Author:

Noh Hee-Jin1ORCID,Gloag Ros2ORCID,Langmore Naomi E.1ORCID

Affiliation:

1. Research School of Biology, Australian National University, RN Robertson Building, 46 Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia

2. School of Life and Environmental Sciences, University of Sydney, Macleay Building A12, Science Road, Sydney, New South Wales 2006, Australia

Abstract

Brood parasitic cuckoos lay their eggs in other birds' nests, whereafter the young cuckoo hatches, ejects its nest-mates and monopolizes the care of the host parents. Theory predicts that hosts should not evolve to recognize and reject cuckoo chicks via imprinting because of the risk of mistakenly imprinting on a cuckoo chick in their first brood and thereafter always rejecting their own chicks. However, recent studies have revealed that some hosts do reject cuckoo chicks from the nest, indicating that these hosts’ recognition systems either do not rely on first brood imprinting, or use cues that are independent of chick phenotype. Here, we investigate the proximate mechanisms of chick rejection behaviour in the large-billed gerygone ( Gerygone magnirostris ), a host of the little bronze-cuckoo ( Chalcites minutillus ). We find that gerygones use true template-based recognition based on at least one visual chick trait (the number of hatchling down-feathers), and that this is further mediated by experience of adult cuckoos at the nest during egg-laying. Given the theoretical constraints of acquiring recognition templates via imprinting, gerygones must possess a template of own-chick appearance that is largely innate. This true recognition has facilitated the evolution of very rapid hatchling rejection and, in turn, striking visual mimicry of host young by little bronze-cuckoo chicks.

Funder

Australian Research Council

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3