The shaping role of self-organization: linking vegetation patterning, plant traits and ecosystem functioning

Author:

Zhao Li-Xia1,Xu Chi2ORCID,Ge Zhen-Ming1,van de Koppel Johan3,Liu Quan-Xing145ORCID

Affiliation:

1. State Key Laboratory of Estuarine and Coastal Research, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, People's Republic of China

2. School of Life Sciences, Nanjing University, Nanjing 210023, China

3. Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research and Utrecht University, PO Box 140, 4400 AC Yerseke, The Netherlands

4. Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration & Tiantong National Station for Forest Ecosystem Research, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, People's Republic of China

5. Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Science, East China Normal University, 200241 Shanghai, People's Republic of China

Abstract

Self-organized spatial patterns are increasingly recognized for their contribution to ecosystem functioning, in terms of enhanced productivity, ecosystem stability, and species diversity in terrestrial as well as marine ecosystems. Most studies on the impact of spatial self-organization have focused on systems that exhibit regular patterns. However, there is an abundance of patterns in many ecosystems which are not strictly regular. Understanding of how these patterns are formed and how they affect ecosystem function is crucial for the broad acceptance of self-organization as a keystone process in ecological theory. Here, using transplantation experiments in salt marsh ecosystems dominated by Scirpus mariqueter , we demonstrate that scale-dependent feedback is driving irregular spatial pattern formation of vegetation. Field observations and experiments have revealed that this self-organization process affects a range of plant traits, including shoot-to-root ratio, rhizome orientation, rhizome node number, and rhizome length, and enhances vegetation productivity. Moreover, patchiness in self-organized salt marsh vegetation can support a better microhabitat for macrobenthos, promoting their total abundance and spatial heterogeneity of species richness. Our results extend existing concepts of self-organization and its effects on productivity and biodiversity to the spatial irregular patterns that are observed in many systems. Our work also helps to link between the so-far largely unconnected fields of self-organization theory and trait-based, functional ecology.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3