On discovering functions in actin filament automata

Author:

Adamatzky Andrew1ORCID

Affiliation:

1. Unconventional Computing Lab, University of the West of England, Bristol, UK

Abstract

We simulate an actin filament as an automaton network. Every atom takes two or three states and updates its state, in discrete time, depending on a ratio of its neighbours in some selected state. All atoms/automata simultaneously update their states by the same rule. Two state transition rules are considered. In semi-totalistic Game of Life like actin filament automaton atoms take binary states ‘0’ and ‘1’ and update their states depending on a ratio of neighbours in the state ‘1’. In excitable actin filament automaton atoms take three states: resting, excited and refractory. A resting atom excites if a ratio of its excited neighbours belong to some specified interval; transitions from excited state to refractory state and from refractory state to resting state are unconditional. In computational experiments, we implement mappings of an 8-bit input string to an 8-bit output string via dynamics of perturbation/excitation on actin filament automata. We assign eight domains in an actin filament as I/O ports. To write True to a port, we perturb/excite a certain percentage of the nodes in the domain corresponding to the port. We read outputs at the ports after some time interval. A port is considered to be in a state True if a number of excited nodes in the port's domain exceed a certain threshold. A range of eight-argument Boolean functions is uncovered in a series of computational trials when all possible configurations of eight-elements binary strings were mapped onto excitation outputs of the I/O domains.

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3