Wolves alter the trajectory of forests by shaping the central place foraging behaviour of an ecosystem engineer

Author:

Gable Thomas D.1ORCID,Johnson-Bice Sean M.2ORCID,Homkes Austin T.1,Fieberg John1ORCID,Bump Joseph K.1ORCID

Affiliation:

1. Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, 2003 Upper Buford Circles, St Paul, MN 55108, USA

2. Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, Canada, R3T 2N2

Abstract

Predators can directly and indirectly alter the foraging behaviour of prey through direct predation and the risk of predation, and in doing so, initiate indirect effects that influence myriad species and ecological processes. We describe how wolves indirectly alter the trajectory of forests by constraining the distance that beavers, a central place forager and prolific ecosystem engineer, forage from water. Specifically, we demonstrate that wolves wait in ambush and kill beavers on longer feeding trails than would be expected based on the spatio-temporal availability of beavers. This pattern is driven by temporal dynamics of beaver foraging: beavers make more foraging trips and spend more time on land per trip on longer feeding trails that extend farther from water. As a result, beavers are more vulnerable on longer feeding trails than shorter ones. Wolf predation appears to be a selective evolutionary pressure propelled by consumptive and non-consumptive mechanisms that constrain the distance from water beavers forage, which in turn limits the area of forest around wetlands, lakes and rivers beavers alter through foraging. Thus, wolves appear intricately linked to boreal forest dynamics by shaping beaver foraging behaviour, a form of natural disturbance that alters the successional and ecological states of forests.

Funder

Minnesota Environment and Natural Resources Trust

National Wolfwatcher Coalition

Minnesota Agricultural Experimental Station

Big Bad Project

Sloun Foundation

The 06 Legacy

Wolf Conservation Center

International Wolf Center

Arc'teryx

Voyageurs Conservancy

NatureSpy

Wildlife Science Center

Vectronic-Aerospace

National Park Service

University of Minnesota

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3