The complexity of co-limitation: nutrigenomics reveal non-additive interactions of calcium and phosphorus on gene expression in Daphnia pulex

Author:

Jones Catriona L. C.1ORCID,Shafer Aaron B. A.12ORCID,Kim William D.1ORCID,Prater Clay3ORCID,Wagner Nicole D.4ORCID,Frost Paul C.5ORCID

Affiliation:

1. Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Canada K9K 0A7

2. Department of Forensic Science, Trent University, Peterborough, Ontario, Canada

3. Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA

4. Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA

5. Department of Biology, Trent University, Peterborough, Ontario, Canada

Abstract

Many lakes across Canada and northern Europe have experienced declines in ambient phosphorus (P) and calcium (Ca) supply for over 20 years. While these declines might create or exacerbate nutrient limitation in aquatic food webs, our ability to detect and quantify different types of nutrient stress on zooplankton remains rudimentary. Here, we used growth bioassay experiments and whole transcriptome RNAseq, collectively nutrigenomics, to examine the nutritional phenotypes produced by low supplies of P and Ca separately and together in the freshwater zooplankter Daphnia pulex . We found that daphniids in all three nutrient-deficient categories grew slower and differed in their elemental composition. Our RNAseq results show distinct responses in singly limited treatments (Ca or P) and largely a mix of these responses in animals under low Ca and P conditions. Deeper investigation of effect magnitude and gene functional annotations reveals this patchwork of responses to cumulatively represent a co-limited nutritional phenotype. Linear discriminant analysis identified a significant separation between nutritional treatments based upon gene expression patterns with the expression patterns of just five genes needed to predict animal nutritional status with 99% accuracy. These data reveal how nutritional phenotypes are altered by individual and co-limitation of two highly important nutritional elements (Ca and P) and provide evidence that aquatic consumers can respond to limitation by more than one nutrient at a time by differentially altering their metabolism. This use of nutrigenomics demonstrates its potential to address many of the inherent complexities in studying interactions between multiple nutritional stressors in ecology and beyond.

Funder

Natural Sciences and Engineering Research Council of Canada

Compute Canada

Canada Foundation for Innovation

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3