Integrating genomics and multivariate evolutionary quantitative genetics: a case study of constraints on sexual selection in Drosophila serrata

Author:

Reddiex Adam J.12,Chenoweth Stephen F.1ORCID

Affiliation:

1. School of Biological Sciences, The University of Queensland, Saint Lucia, Queensland 4072, Australia

2. Research School of Biology, Australian National University, Australian Capital Territory 0200, Australia

Abstract

In evolutionary quantitative genetics, the genetic variance–covariance matrix, G , and the vector of directional selection gradients, β , are key parameters for predicting multivariate selection responses and genetic constraints. Historically, investigations of G and β have not overlapped with those dissecting the genetic basis of quantitative traits. Thus, it remains unknown whether these parameters reflect pleiotropic effects at individual loci. Here, we integrate multivariate genome-wide association study (GWAS) with G and β estimation in a well-studied system of multivariate constraint: sexual selection on male cuticular hydrocarbons (CHCs) in Drosophila serrata . In a panel of wild-derived re-sequenced lines, we augment genome-based restricted maximum likelihood to estimate G alongside multivariate single nucleotide polymorphism (SNP) effects, detecting 532 significant associations from 1 652 276 SNPs. Constraint was evident, with β lying in a direction of G with low evolvability. Interestingly, minor frequency alleles typically increased male CHC-attractiveness suggesting opposing natural selection on β . SNP effects were significantly misaligned with the major eigenvector of G , g max , but well aligned to the second and third eigenvectors g 2 and g 3 . We discuss potential factors leading to these varied results including multivariate stabilizing selection and mutational bias. Our framework may be useful as researchers increasingly access genomic methods to study multivariate selection responses in wild populations.

Funder

Australian Research Council

University of Queensland

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3