Red dominates black: agonistic signalling among head morphs in the colour polymorphic Gouldian finch

Author:

Pryke Sarah R1,Griffith Simon C1

Affiliation:

1. School of Biological, Earth and Environmental Sciences, University of New South WalesSydney, NSW 2052, Australia

Abstract

Recent sexual selection studies on the evolution of bird colouration have mainly focused on signals with a high level of condition-dependent variation, with much less attention given to colour traits whose expression is genetically controlled. Here, we experimentally tested the relative importance of a genetic colour polymorphism in determining male dominance in the Gouldian finch ( Erythrura gouldiae ), a species displaying three completely discrete but naturally co-occurring genetically inherited phenotypes; yellow-, red- (carotenoid) and black-headed (melanin) morphs. First, in staged dominance contests between unfamiliar birds of different head morphs, red-headed males dominated black-headed males, both of which dominated the yellow-headed birds. Second, within morphs, the intensity and size of the strongly ultraviolet-blue collar determined the outcome of these contests, and among the red-headed males, redder males dominated less chromatic birds. Lastly, when the dominance signal of red-headed birds was experimentally destabilized (i.e. blackened or reddened), naturally red-headed morphs continued to dominate both the black-and yellow-headed morphs. Together, these results suggest that intrinsic dominance-related behavioural differences between the three colour morphs, which are likely to influence the relative fitness of each morph, contribute to the complex selective patterns maintaining these three discrete phenotypes in relatively stable frequencies in wild populations.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3