Geranylgeraniol prevents zoledronic acid-mediated reduction of viable mesenchymal stem cells via induction of Rho-dependent YAP activation

Author:

Singhatanadgit Weerachai12ORCID,Hankamolsiri Weerawan3,Janvikul Wanida3

Affiliation:

1. Faculty of Dentistry, Thammasat University, Pathumthani, 12121, Thailand

2. Research Unit in Mineralized Tissue Reconstruction, Thammasat University, Pathumthani, 12121, Thailand

3. Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathumthani 12120, Thailand

Abstract

Long-term use of zoledronic acid (ZA) increases the risk of medication-related osteonecrosis of the jaw (MRONJ). This may be attributed to ZA-mediated reduction of viable mesenchymal stem cells (MSCs). ZA inhibits protein geranylgeranylation, thus suppressing cell viability and proliferation. Geranylgeraniol (GGOH), which is a naturally found intermediate compound in the mevalonate pathway, has positive effects against ZA. However, precise mechanisms by which GGOH may help preserve stem cell viability against ZA are not fully understood. The objective of this study was to investigate the cytoprotective mechanisms of GGOH against ZA. The results showed that while ZA dramatically decreased the number of viable MSCs, GGOH prevented this negative effect. GGOH-rescued ZA-exposed MSCs formed mineralization comparable to that produced by normal MSCs. Mechanistically, GGOH preserved the number of viable MSCs by its reversal of ZA-mediated Ki67 + MSC number reduction, cell cycle arrest and apoptosis. Moreover, GGOH prevented ZA-suppressed RhoA activity and YAP activation. The results also established the involvement of Rho-dependent YAP and YAP-mediated CDK6 in the cytoprotective ability of GGOH against ZA. In conclusion, GGOH preserves a pool of viable MSCs with osteogenic potency against ZA by rescuing the activity of Rho-dependent YAP activation, suggesting GGOH as a promising agent and YAP as a potential therapeutic target for MRONJ.

Funder

Thammasat University Research Fund

National Metal and Materials Technology Center

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3