Widespread reduction in sun-induced fluorescence from the Amazon during the 2015/2016 El Niño

Author:

Koren Gerbrand1ORCID,van Schaik Erik1ORCID,Araújo Alessandro C.2,Boersma K. Folkert13,Gärtner Antje1,Killaars Lars4ORCID,Kooreman Maurits L.3,Kruijt Bart1,van der Laan-Luijkx Ingrid T.1,von Randow Celso5,Smith Naomi E.1,Peters Wouter14

Affiliation:

1. Wageningen University and Research, Wageningen, The Netherlands

2. Embrapa Amazônia Oriental CPATU, Belem, Brazil

3. Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands

4. University of Groningen, Centre for Isotope Research, Groningen, The Netherlands

5. Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil

Abstract

The tropical carbon balance dominates year-to-year variations in the CO 2 exchange with the atmosphere through photosynthesis, respiration and fires. Because of its high correlation with gross primary productivity (GPP), observations of sun-induced fluorescence (SIF) are of great interest. We developed a new remotely sensed SIF product with improved signal-to-noise in the tropics, and use it here to quantify the impact of the 2015/2016 El Niño Amazon drought. We find that SIF was strongly suppressed over areas with anomalously high temperatures and decreased levels of water in the soil. SIF went below its climatological range starting from the end of the 2015 dry season (October) and returned to normal levels by February 2016 when atmospheric conditions returned to normal, but well before the end of anomalously low precipitation that persisted through June 2016. Impacts were not uniform across the Amazon basin, with the eastern part experiencing much larger (10–15%) SIF reductions than the western part of the basin (2–5%). We estimate the integrated loss of GPP relative to eight previous years to be 0.34–0.48 PgC in the three-month period October–November–December 2015. This article is part of a discussion meeting issue ‘The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications’.

Funder

H2020 European Research Council

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3