Armet, an aphid effector protein, induces pathogen resistance in plants by promoting the accumulation of salicylic acid

Author:

Cui Na12,Lu Hong1,Wang Tianzuo3,Zhang Wenhao32,Kang Le12ORCID,Cui Feng12ORCID

Affiliation:

1. State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China

2. University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

3. State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China

Abstract

Effector proteins present in aphid saliva are thought to modulate aphid–plant interactions. Armet, an effector protein, is found in the phloem sap of pea-aphid-infested plants and is indispensable for the survival of aphids on plants. However, its function in plants has not been investigated. Here, we explored the functions of Armet after delivery into plants. Examination of the transcriptomes of Nicotiana benthamiana and Medicago truncatula following transgenic expression of Armet or infiltration of the protein showed that Armet activated pathways associated with plant–pathogen interactions, mitogen-activated protein kinase and salicylic acid (SA). Armet induced a fourfold increase in SA accumulation by regulating the expression of SAMT and SABP2 , two genes associated with SA metabolism, in Armet-infiltrated tobacco. The increase in SA enhanced the plants' resistance to bacterial pathogen Pseudomonas syringae but had no detectable adverse effects on aphid survival or reproduction. Similar molecular responses and a chlorosis phenotype were induced in tobacco by Armet from two aphid species but not by locust Armet, suggesting that the effector function of Armet may be specific for aphids. The results suggest that Armet causes plants to make a pathogen-resistance decision and reflect a novel tripartite insect–plant–pathogen interaction. This article is part of the theme issue ‘Biotic signalling sheds light on smart pest management’.

Funder

the Strategic Priority Research Program of the Chinese Academy of Sciences

the Natural Science Foundation of China

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3