The evolution of competitive ability for essential resources

Author:

Bernhardt Joey R.1ORCID,Kratina Pavel2ORCID,Pereira Aaron Louis1,Tamminen Manu3ORCID,Thomas Mridul K.4ORCID,Narwani Anita1ORCID

Affiliation:

1. Aquatic Ecology Department, Eawag, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland

2. School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK

3. Department of Biology, University of Turku, Natura, University Hill, 20014 Turku, Finland

4. Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Kongens Lyngby, Denmark

Abstract

Competition for limiting resources is among the most fundamental ecological interactions and has long been considered a key driver of species coexistence and biodiversity. Species' minimum resource requirements, their R *s, are key traits that link individual physiological demands to the outcome of competition. However, a major question remains unanswered—to what extent are species’ competitive traits able to evolve in response to resource limitation? To address this knowledge gap, we performed an evolution experiment in which we exposed Chlamydomonas reinhardtii for approximately 285 generations to seven environments in chemostats that differed in resource supply ratios (including nitrogen, phosphorus and light limitation) and salt stress. We then grew the ancestors and descendants in a common garden and quantified their competitive abilities for essential resources. We investigated constraints on trait evolution by testing whether changes in resource requirements for different resources were correlated. Competitive abilities for phosphorus improved in all populations, while competitive abilities for nitrogen and light increased in some populations and decreased in others. In contrast to the common assumption that there are trade-offs between competitive abilities for different resources, we found that improvements in competitive ability for a resource came at no detectable cost. Instead, improvements in competitive ability for multiple resources were either positively correlated or not significantly correlated. Using resource competition theory, we then demonstrated that rapid adaptation in competitive traits altered the predicted outcomes of competition. These results highlight the need to incorporate contemporary evolutionary change into predictions of competitive community dynamics over environmental gradients. This article is part of the theme issue ‘Conceptual challenges in microbial community ecology’.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Nippon Foundation

H2020 Marie Skłodowska-Curie Actions

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3