Applying optimal control theory to complex epidemiological models to inform real-world disease management

Author:

Bussell E. H.1,Dangerfield C. E.1,Gilligan C. A.1,Cunniffe N. J.1ORCID

Affiliation:

1. Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK

Abstract

Mathematical models provide a rational basis to inform how, where and when to control disease. Assuming an accurate spatially explicit simulation model can be fitted to spread data, it is straightforward to use it to test the performance of a range of management strategies. However, the typical complexity of simulation models and the vast set of possible controls mean that only a small subset of all possible strategies can ever be tested. An alternative approach—optimal control theory—allows the best control to be identified unambiguously. However, the complexity of the underpinning mathematics means that disease models used to identify this optimum must be very simple. We highlight two frameworks for bridging the gap between detailed epidemic simulations and optimal control theory: open-loop and model predictive control. Both these frameworks approximate a simulation model with a simpler model more amenable to mathematical analysis. Using an illustrative example model, we show the benefits of using feedback control, in which the approximation and control are updated as the epidemic progresses. Our work illustrates a new methodology to allow the insights of optimal control theory to inform practical disease management strategies, with the potential for application to diseases of humans, animals and plants. This article is part of the theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control’. This theme issue is linked with the earlier issue ‘Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes’.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3