A mechanistic oxygen- and temperature-limited metabolic niche framework

Author:

Ern Rasmus1ORCID

Affiliation:

1. Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg 9220, Denmark

Abstract

The abundance and distribution of fishes and other water-breathing ectotherms are partially shaped by the capacities of individuals to perform ecologically relevant functions, which collectively determine whole-organism performance. Aerobic scope (AS) quantifies the capacity of the cardiorespiratory system to supply tissues with oxygen for fuelling such functions. Aquatic hypoxia and water temperature are principal environmental factors affecting the AS of water-breathing ectotherms. Although it is intuitive that animal energetics will be of ecological significance, many studies argue against a hypothesized overarching link between AS, whole-organism performance, and shifts in the abundance and distribution of water-breathing ectotherms with environmental change. Consequently, relationships between AS and ecologically relevant performance traits must be established for individual species. This article proposes a mechanistic framework for integrating and correlating experimental traits for assessing the AS, anaerobic capacity (AC) and range boundaries of water-breathing ectotherms exposed to progressive aquatic hypoxia and rising water temperature. The framework also describes cardiorespiratory thermal tolerance and proposes an empirical definition of the mechanism underlying the critical thermal maximum in species with oxygen-dependent upper thermal limits. Incorporating performance traits, exemplified with preference and avoidance responses, may provide information about the role of metabolism in shaping whole-organism performance, and the potential applicability of AS and AC in species distribution models. This article is part of the theme issue ‘Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen’.

Funder

Company of Biologists

Carlsbergfondet

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3