Affiliation:
1. Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
2. Department of Computing, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
Abstract
One of the first steps in understanding a protein's function is to determine its localization; however, the methods for localizing proteins in some systems have not kept pace with the developments in other fields, creating a bottleneck in the analysis of the large datasets that are generated in the post-genomic era. To address this, we developed tools for tagging proteins in trypanosomatids. We made a plasmid that, when coupled with long primer PCR, can be used to produce transgenes at their endogenous loci encoding proteins tagged at either terminus or within the protein coding sequence. This system can also be used to generate deletion mutants to investigate the function of different protein domains. We show that the length of homology required for successful integration precluded long primer PCR tagging in
Leishmania mexicana
. Hence, we developed plasmids and a fusion PCR approach to create gene tagging amplicons with sufficiently long homologous regions for targeted integration, suitable for use in trypanosomatids with less efficient homologous recombination than
Trypanosoma brucei
. Importantly, we have automated the primer design, developed universal PCR conditions and optimized the workflow to make this system reliable, efficient and scalable such that whole genome tagging is now an achievable goal.
Subject
General Biochemistry, Genetics and Molecular Biology,Immunology,General Neuroscience
Cited by
231 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献