Community dynamics and sensitivity to model structure: towards a probabilistic view of process-based model predictions

Author:

Aldebert Clement1ORCID,Stouffer Daniel B.2

Affiliation:

1. Mediterranean Institute of Oceanography, Aix-Marseille University, Toulon University, CNRS/INSU, IRD, MIO, UM 110, 13288 Cedex 09, Marseille, France

2. School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand

Abstract

Statistical inference and mechanistic, process-based modelling represent two philosophically different streams of research whose primary goal is to make predictions. Here, we merge elements from both approaches to keep the theoretical power of process-based models while also considering their predictive uncertainty using Bayesian statistics. In environmental and biological sciences, the predictive uncertainty of process-based models is usually reduced to parametric uncertainty. Here, we propose a practical approach to tackle the added issue of structural sensitivity, the sensitivity of predictions to the choice between quantitatively close and biologically plausible models. In contrast to earlier studies that presented alternative predictions based on alternative models, we propose a probabilistic view of these predictions that include the uncertainty in model construction and the parametric uncertainty of each model. As a proof of concept, we apply this approach to a predator–prey system described by the classical Rosenzweig–MacArthur model, and we observe that parametric sensitivity is regularly overcome by structural sensitivity. In addition to tackling theoretical questions about model sensitivity, the proposed approach can also be extended to make probabilistic predictions based on more complex models in an operational context. Both perspectives represent important steps towards providing better model predictions in biology, and beyond.

Funder

European FEDER fund

Royal Society Te Aparangi

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3