Constraints on somite formation in developing embryos

Author:

Juul Jonas S.1ORCID,Jensen Mogens H.1,Krishna Sandeep2ORCID

Affiliation:

1. Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen 2100, Denmark

2. Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India

Abstract

Segment formation in vertebrate embryos is a stunning example of biological self-organization. Here, we present an idealized framework, in which we treat the presomitic mesoderm (PSM) as a one-dimensional line of oscillators. We use the framework to derive constraints that connect the size of somites, and the timing of their formation, to the growth of the PSM and the gradient of the somitogenesis clock period across the PSM. Our analysis recapitulates the observations made recently in ex vivo cultures of mouse PSM cells, and makes predictions for how perturbations, such as increased Wnt levels, would alter somite widths. Finally, our analysis makes testable predictions for the shape of the phase profile and somite widths at different stages of PSM growth. In particular, we show that the phase profile is robustly concave when the PSM length is steady and slightly convex in an important special case when it is decreasing exponentially. In both cases, the phase profile scales with the PSM length; in the latter case, it scales dynamically. This has important consequences for the velocity of the waves that traverse the PSM and trigger somite formation, as well as the effect of errors in phase measurement on somite widths.

Funder

Det Frie Forskningsråd

Danmarks Grundforskningsfond

Simons Foundation

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3