Extinction intensity, selectivity and their combined macroevolutionary influence in the fossil record

Author:

Payne Jonathan L.1ORCID,Bush Andrew M.2,Chang Ellen T.3,Heim Noel A.1,Knope Matthew L.4,Pruss Sara B.5

Affiliation:

1. Department of Geological Sciences, Stanford University, Standford, CA, USA

2. Department of Ecology and Evolutionary Biology and Center for Integrative Geosciences, University of Connecticut, Storrs, CT, USA

3. Division of Epidemiology, Department of Health Research and Policy, Stanford University School of Medicine, Standford, CA, USA

4. Department of Biology, University of Hawaii, Hilo, HI, USA

5. Department of Geosciences, Smith College, Northampton, MA, USA

Abstract

The macroevolutionary effects of extinction derive from both intensity of taxonomic losses and selectivity of losses with respect to ecology, physiology and/or higher taxonomy. Increasingly, palaeontologists are using logistic regression to quantify extinction selectivity because the selectivity metric is independent of extinction intensity and multiple predictor variables can be assessed simultaneously. We illustrate the use of logistic regression with an analysis of physiological buffering capacity and extinction risk in the Phanerozoic marine fossil record. We propose the geometric mean of extinction intensity and selectivity as a metric for the influence of extinction events. The end-Permian mass extinction had the largest influence on the physiological composition of the fauna owing to its combination of high intensity and strong selectivity. In addition to providing a quantitative measure of influence to compare among past events, this approach provides an avenue for quantifying the risk posed by the emerging biodiversity crisis that goes beyond a simple projection of taxonomic losses.

Funder

Division of Earth Sciences

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous)

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3