Upper beak depression instead of elevation dominates cranial kinesis in woodpeckers

Author:

Lyons S.1ORCID,Baeckens S.23ORCID,Van Wassenbergh S.3ORCID

Affiliation:

1. Laboratorio de Anatomía Comparada, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina

2. Evolution and Optics of Nanostructures Lab, Department of Biology, Ghent University, 9000 Gent, Belgium

3. Laboratory of Functional Morphology, Department of Biology, University of Antwerp, 2610 Antwerpen, Belgium

Abstract

The value of birds’ ability to move the upper beak relative to the braincase has been shown in vital tasks like feeding and singing. In woodpeckers, such cranial kinesis has been thought to hinder pecking as delivering forceful blows calls for a head functioning as a rigid unit. Here, we tested whether cranial kinesis is constrained in woodpeckers by comparing upper beak rotation during their daily activities such as food handling, calling and gaping with those from closely related species that also have a largely insectivorous diet but do not peck at wood. Both woodpeckers and non-woodpecker insectivores displayed upper beak rotations of up to 8 degrees. However, the direction of upper beak rotation differed significantly between the two groups, with woodpeckers displaying primarily depressions and non-woodpeckers displaying elevations. The divergent upper beak rotation of woodpeckers may be caused either by anatomical modifications to the craniofacial hinge that reduce elevation, by the caudal orientation of the mandible depressor muscle forcing beak depressions, or by both. Our results suggest that pecking does not result in plain rigidification at the upper beak's basis of woodpeckers, but it nevertheless significantly influences the way cranial kinesis is manifested.

Funder

University of Antwerp

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3