Giant gar from directly above the Cretaceous–Palaeogene boundary suggests healthy freshwater ecosystems existed within thousands of years of the asteroid impact

Author:

Brownstein Chase Doran12,Lyson Tyler R.3

Affiliation:

1. Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA

2. Stamford Museum and Nature Center, Stamford, CT, USA

3. Department of Earth Sciences, Denver Museum of Nature and Science, Denver, CO, USA

Abstract

The Cretaceous–Palaeogene (K–Pg) mass extinction was responsible for the destruction of global ecosystems and loss of approximately three-quarters of species diversity 66 million years ago. Large-bodied land vertebrates suffered high extinction rates, whereas small-bodied vertebrates living in freshwater ecosystems were buffered from the worst effects. Here, we report a new species of large-bodied (1.4–1.5 m) gar based on a complete skeleton from the Williston Basin of North America. The new species was recovered 18 cm above the K–Pg boundary, making it one of the oldest articulated vertebrate fossils from the Cenozoic. The presence of this freshwater macropredator approximately 1.5–2.5 thousand years after the asteroid impact suggests the rapid recovery and reassembly of North American freshwater food webs and ecosystems after the mass extinction.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3