Brain asymmetry as minimization of free energy: a theoretical model

Author:

Vallortigara Giorgio1ORCID,Vitiello Giuseppe2ORCID

Affiliation:

1. Centre for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, Rovereto, Trento I-38068, Italy

2. Department of Physics 'E.R. Caianiello', University of Salerno, Via Giovanni Paolo II, 132, Fisciano (Salerno) I-84084, Italy

Abstract

The asymmetry between the left and right sides seems to be a general principle of organization of the nervous systems in Bilateria, providing the foundations for a plethora of leftward and rightward biases in behaviour as documented in species ranging from Caenorhabditis elegans nematodes to humans. Several theories have been put forward to account for the existence and maintenance in the evolution of the asymmetric organization of the brain at both individual and population levels. However, what is missing in theorizing about the evolution of brain asymmetry is an overarching general hypothesis that may subsume all different aspects of current models. Here, we tried to provide an overarching general framework based on the energy and free-energy minimization principle, which proved so valuable in other areas of neuroscience. We found that at the individual level the antisymmetric singlet configuration realizes the lowest energy state of the system, whereas at the group level, the spontaneous emergence of directional asymmetry arises as a consequence of the minimization of the free energy of the system, which guarantees its stability and equilibrium. We thus argue that the various phenomenological aspects of brain asymmetry that have been captured in biology—e.g. sparing of neural tissue, control of unitary motor responses and, at the population level, evolutionarily stable strategies described by mathematical games theory—may be thought of as the manifestation of a more general principle of energy minimization generating, among others, asymmetry of the brains.

Publisher

The Royal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3