Mud drapes in sand-wave deposits: a physical model with application to the Folkestone beds (early cretaceous, southeast England)

Author:

Abstract

Large-scale cross-bedded units with mud-draped bottomsets and foresets occur in several shallow-marine sand formations attributed to tidal sand waves. The deposition and preservation of mud drapes on sand waves are favoured by a large sand-wave asymmetry, a high bottom concentration of suspended mud, large timevelocity asymmetry and low strength of tidal currents, and a high eccentricity of the tidal-current ellipse. The deposits formed on a strongly asymmetrical sand wave beneath a strongly asymmetrical current during one semidiurnal or diurnal tidal cycle will be a distinctive couplet composed of (i) a compound mud drape, with an internal silt-sand parting formed by the subordinate tidal stream, overlain by (ii) a group of sandy foresets and bottomsets deposited by the dominant stream. As the tides wax from neaps towards springs, and subsequently wane toward the next neaps, the spacing of drapes between sandy foresets will at first increase and then decline, whence a bundling or clustering of mud layers, and a periodicity in the streamwise arrangement of drapes and sandy foresets, will appear within the cross-bedding set. Tidal regime and the bed-material erodibility determine the character of these spring-neap depositional cycles, or bundles. The number of sand layers, their accumulated thickness, and their range in thickness within a spring-neap depositional cycle all increase as the tidal currents grow in strength relative to the threshold speed for sand erosion. Nontidal factors may modify the tidally dependent spring-neap pattern of drapes and foresets, among which wave action seems most important. Mud deposition is suppressed at times of heightened wave-activity, with the result that spring-neap depositional cycles become abbreviated in the number of identifiable sedimentary episodes while acquiring an exaggeratedly large range in drape spacing. Long term changes of tidal regime, such as occur between equinoxes and solstices, should be detectable as gradual changes through a long sequence of spring-neap bundles. The Folkestone Beds of the western and northeastern Weald include many thick cross-bedded units with mud drapes often visibly bundled. At three western sites, the sands are fine to medium grained, with some coarse-grade and even pebbly material. The drapes there, consisting of fine- to very-fine-grained kaolinitic silt, range in thickness mainly between about 0.002 mm and 0.02 m. The spacing between groups of sandy foresets and bottomsets changes in an orderly way along the cross-bedding sets, varying from as little as about 0.01 m to several metres. With reference to the model, and with the help of time-series and Fourier analysis, the character of the drapes themselves, and the nature of the depositional cycles to which they contribute, it seems likely that the Folkestone Beds were deposited from diurnal tidal currents of spatially changing strength assisted by a strong unidirectional current. The limitation of drapes to western and northeastern areas is consistent with the restriction of the more eccentric tidal currents to nearshore areas, even though the currents seem to have been strongest nearest to shore. The length of the depositional cycles in the Folkestone Beds - proposed to record spring-neap tidal cycles-is consistent with the slightly longer year (in terms of solar days) inferred for early Cretaceous times on various independent grounds.

Publisher

The Royal Society

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3