The constancy of G and other gravitational experiments

Author:

Abstract

Traditionally, theories of gravitation have received their most demanding tests in the solar-system laboratory. Today, electronic observing technology makes possible solar system tests of substantially increased accuracy. We consider how these technologies are being used to study gravitation with an emphasis on two questions: (i) Dirac and others have investigated theories in which the constant of gravitation, G , appears to change with time. Recent analyses using the Viking data yield | G / G | < 3 x 10 -11 per year. With further analysis, the currently available ensemble of data should permit an estimate of G/G with an uncertainty of 10 -11 per year. At this level it will become possible to distinguish among competitive theories. (ii) Shapiro’s time-delay effect has provided the most stringent solar-system test of general relativity. The effect has been measured to be consistent with the predictions of general relativity with a fractional uncertainty of 0.1%. An improved analysis of an enhanced data set should soon permit an even more stringent test. Technology now permits new kinds of tests to be performed. Among these are some that measure relativistic effects due to the square of the (solar) potential and others that detect the Earth’s ‘gravitomagnetic’ field (the Lense-Thirring effect). These experiments, and the use of astrophysical systems are among the experimental challenges for the coming decades.

Publisher

The Royal Society

Subject

General Engineering

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3