Dynamical theory of electron diffraction for the electron microscopic image of crystal lattices I. Images of single crystals

Author:

Abstract

The dynamical theory of electron diffraction is applied to the interpretation of electron micro­ scopic images of lattice planes of plate- and wedge-shaped crystals. The wave functions and corresponding intensities predicting interference fringes on the exit surface of a crystal are derived. It is shown in both cases that the fringes are composed of parallel lines and the spacing of the fringes at the exact Bragg angle coincides with that of the original lattice but the positions of the lines do not coincide with those of potential maxima in the crystal, i.e. intensity profiles of the fringes do not represent the variation of mass-thickness in the crystal. The intensity profiles and the spacings of the fringes vary with the thickness of crystal and the deviation from the Bragg angle. The fringes from a bent plate-shaped crystal, which are formed on the extinction contour bands, show the same spacing as that of the crystal lattice along the centre of the contour but they have an increased or decreased spacing near the edge of the contour. The fringes which are formed on the subsidiary extinction contour also show spacing anomaly; they are shifted by half the corresponding amount for the principal contour. The spacing of the fringes of a wedge-shaped crystal coincides with that of the original lattice at the exact Bragg angle, but the contrast of the lines reverses wherever the thickness of the crystal increases by an amount of XE/2V g (A, wave length; E , accelerating potential; V g , Fourier coefficient of inner potential of the crystal). For deviation from the Bragg angle, the spacing of the fringes, in general, does not coincide with that of the original lattice and, moreover, the contrast of the lines reverses wherever the thickness of the crystal increases by an amount of The anomalies of spacing and reversal of contrast which are expected from the present theory were observed in the electron microscopic images of metal-phthalocyanine and sodium faujasite crystals respectively. The effects of absorption by the crystal and divergence of illumination on the contrast of the image are discussed and the possibility of obtaining two-dimensional projections of the atomic arrangement in a crystal by using electron microscopic images is also discussed.

Publisher

The Royal Society

Subject

General Engineering

Reference10 articles.

1. Arch. mikr;Abbe E.;Anat.,1837

2. Electron microscopic observation of periodic structures below 10 Å

3. Bethe H. A. 1928 Ann.

4. Proc. Roy;Blackman M.;Soc. A,1939

5. Brindley G. W. Comer J. J. Uyeda R. & Zussman J. 1958 Acta Cryst. 11 99.

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Notes and References;Principles of Electron Optics, Volume 3;2022

2. Electron Diffraction and Transmission Electron Microscopy;Materials Science and Technology;2006-09-15

3. Microscopy;Ullmann's Encyclopedia of Industrial Chemistry;2005-07-15

4. Static and in situ TEM investigation of phase relationships, phase dissolution, and interface motion in Ag–Au–Cu alloy nanoparticles;Acta Materialia;2004-06

5. Structural Characterization of (TBA, H)Ca2Nb3O10 Nanosheets Formed by Delamination of a Precursor-Layered Perovskite;The Journal of Physical Chemistry B;2003-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3