A discussion on deformation of solids by the impact of liquids, and its relation to rain damage in aircraft and missiles, to blade erosion in steam turbines, and to cavitation erosion - Stress waves, deformation and fracture caused by liquid impact

Author:

Abstract

When a liquid mass strikes a solid surface, compressible behaviour, giving rise to a sharp peak of pressure, may occur in the initial stages of the impact. The duration of the peak depends on the dimensions and impact velocity of the liquid mass, and also on the compressional wave velocity for the liquid. There are similarities between this type of loading and that produced by the detonation of small quantities of explosive, since both give intense pressure peaks of only a few microseconds’ duration. The fracture and deformation of glasses, hard polymers, single crystal and ceramic materials by liquid impact at velocities up to 1000 m/s is described and briefly compared with that produced by solid/solid impact and explosive loading. The detailed development of fracture has been followed by high speed photography. In brittle solids the main characteristics of damage on the front surface is a ring fracture surrounding a largely undamaged area. The ring fracture forms at the edge of the loaded area where high tensile forces develop during impact. Outside this main ring of fracture short circumferential cracks occur; these are shown to be initiated by the Rayleigh surface wave at points where flaws existed. More complex fracture patterns which appear on the front surface of plates are due to the reinforcement of the surface wave with components of stress reflected from the back surface. Thin plate specimens often exhibit ‘scabbing’ fracture at the rear surface; in brittle materials of low attenuation this form of damage can be of prime importance. Since the stress pulses producing fracture during liquid impact are short the fractures themselves remain short and discrete. By a combination of impact loading and etching it is possible to investigate the distribution and depth of flaws, their role in the fracture process, and the effect which etching has upon them.

Publisher

The Royal Society

Subject

General Engineering

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3