Abstract
By fitting small probe-forming lenses into a conventional electron microscope, we have been able to observe higher order Laue zone (h.o.l.z.) diffraction effects from high symmetry zone axes of a wide variety of materials. Cooling the specimen with liquid nitrogen both greatly reduces the contamination rate and increases the visibility of the h.o.l.z. lines. An interpretation of these lines is given in terms of the dispersion surface construction and conditions for the visibility of h.o.l.z. effects are deduced. A theory from which numerical solutions have been obtained is outlined. Using h.o.l.z. lines, we can deduce the microscope operating voltage or the lattice parameter of the specimen to approximately one part in a thousand; relative changes can be measured about five times more precisely. The spatial resolution of the technique is approximately 10 nm. Strain gradients within the illuminated area can produce fringe patterns.
Cited by
189 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献