Computer simulations of polyatomic molecules - I. Monte Carlo studies of hard diatomics

Author:

Abstract

The Monte Carlo method has been used to study a model system of 256 hard diatomic molecules, each consisting of two fused hard spheres of diameter σ with centres separated by reduced distance L = L/σ of 0.2, 0.4 and 0.6, at densities typical of the liquid state. The orientational structure of dense, hard diatomic fluids has been studied by calculating up to sixteen terms in the expansion of the total pair correlation function, g ( r 12 , ω 1 , ω 2 ), in spherical harmonics. The coefficients g u'm ( r 12) the series have been calculated as ensemble averages in the simulation. At short distances, the system exhibits a high degree of angular correlation, which increases with increasing density and elongation; however, this correlation is relatively short ranged at all densities and elongations, and in no case is there significant angular structure at distances greater than twice the major diameter of the molecule. In the nearest neighbour shell there is a strong preference for 'T-shaped’ pair orientations. At low elongations and densities the spherical harmonic coefficients are in close agreement with those predicted both by the ‘blip function’ theory and the solution of the Percus-Yevick equation for hard diatomics. The harmonic series for the total pair correlation function, is rapidly convergent at distances greater than L + σ , but slowly convergent at smaller distances. The results are suitable for use as a non-spherical reference system for perturbation calculations.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference29 articles.

1. J ■chem;Anderson H. C.;Phys.,1972

2. Simulation of Diatomic Homonuclear Liquids

3. J.chem;Blum L.;Phys.,1972

4. J . chem;Chandler D.;Phys.,1972

5. J. chem;Chen Y. D.;Phys.,1969

Cited by 168 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3