Fracture toughness of human amniotic membranes

Author:

Koh Ching Theng12,Tonsomboon Khaow1,Oyen Michelle L.1ORCID

Affiliation:

1. Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK

2. Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 81310 Parit Raja, Johor, Malaysia

Abstract

Amnion is a membrane that surrounds and structurally protects the developing fetus during pregnancy. The rupture of amniotic membranes prior to both normal and preterm deliveries involves stretch forces acting on a biochemically triggered weak zone of the membranes. Fracture toughness is an important mechanical property describing how the membranes containing a defect resist fracture, but this property has never been investigated in amniotic membranes. In this work, the fracture toughness of many samples cut from four pieces of amniotic membrane from different mothers was examined by uniaxial and pure shear (mode I) fracture tests. The measurement was checked for dependence on the sample geometry and notch length. Results from the uniaxial tensile test show J-shaped stress–strain curves and confirm that the amniotic membrane is a nonlinear material. The measured fracture toughness of four amniotic membranes ranged from 0.96 ± 0.11 to 1.83 ± 0.18 kJ m −2 . Despite considering the effect of the presence of the defect on mechanical property measurement, similar fracture behaviour was observed for pre-notched and unnotched specimens, indicating that the membranes were extremely tolerant to defects. This defect-tolerant characteristic provides insight into the understanding of fetal membrane rupture.

Funder

Ministry of Higher Education Malaysia

Publisher

The Royal Society

Subject

Biomedical Engineering,Biomaterials,Biochemistry,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3