Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac)

Author:

Stephan Klass E.12,Kamper Lars1,Bozkurt Ahmet1,Burns Gully A. P. C.3,Young Malcolm P.2,Kötter Rolf14

Affiliation:

1. Computational Systems Neuroscience Group, C. and O. Vogt Brain Research Institute, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany

2. Neural Systems Group, Department of Psychology, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK

3. Knowledge Mechanics Research Group, Department of Neurobiology, University of Southern California, Los Angeles, CA 90089-2520, USA

4. Institute of Morphological Endocrinology and Histochemistry, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany

Abstract

The need to integrate massively increasing amounts of data on the mammalian brain has driven several ambitious neuroscientific database projects that were started during the last decade. Databasing the brain's anatomical connectivity as delivered by tracing studies is of particular importance as these data characterize fundamental structural constraints of the complex and poorly understood functional interactions between the components of real neural systems. Previous connectivity databases have been crucial for analysing anatomical brain circuitry in various species and have opened exciting new ways to interpret functional data, both from electrophysiological and from functional imaging studies. The eventual impact and success of connectivity databases, however, will require the resolution of several methodological problems that currently limit their use. These problems comprise four main points: (i) objective representation of coordinate–free, parcellation–based data, (ii) assessment of the reliability and precision of individual data, especially in the presence of contradictory reports, (iii) data mining and integration of large sets of partially redundant and contradictory data, and (iv) automatic and reproducible transformation of data between incongruent brain maps. Here, we present the specific implementation of the ‘collation of connectivity data on the macaque brain’ (CoCoMac) database (http://www.cocomac.org). The design of this database addresses the methodological challenges listed above, and focuses on experimental and computational neuroscientists' needs to flexibly analyse and process the large amount of published experimental data from tracing studies. In this article, we explain step–by–step the conceptual rationale and methodology of CoCoMac and demonstrate its practical use by an analysis of connectivity in the prefrontal cortex.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 307 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3