Molecular forces governing non-electrolyte permeation through cell membranes

Author:

Abstract

The relations between the chemical structure of non-electrolytes and their ability to permeate cell membranes are analysed at the level of molecular forces, using the measurements of reflexion coefficients in gall-bladder epithelial cells tabulated in the preceding paper. Stronger solute: water forces and weaker solute: membrane forces are associated with lower permeating power. The portions of the membrane controlling non-electrolyte permeation behave as nearly pure hydrocarbons with very few hydrogen-bonding sites. Most substituents (hydroxyl, ether, carbonyl, ester, amino, amide, urea,nitrile) are shown to decrease permeation in proportion to the number and strength of intermolecular hydrogen bonds which they form with water, while intramolecular hydrogen bonding accelerates permeation. Carbon-carbon double bonds and triple bonds and aromatic residues decrease permeability due to hydrogen bonds involving nelectrons. Inductive effects, in which a substituent indirectly modifies permeability by withdrawing or releasing electrons at an adjacent hydrogen bonding site, are most noticeable for halogens, the nitro group, double and triple bonds, and branched alkyl groups. Altered forces between membrane hydrocarbons and the solute retard the permeation (weaker forces) of fluorine compounds and branched compounds, and slightly accelerate the permeation (stronger forces) of other halogen derivatives and compounds with long carbon chains. The main factor in the increase of permeability with increasing hydrocarbon chain length is an entropy effect associated with a change in local water structure; and this effect is partly responsible for the decrease in permeability with chain branching, whose origin is particularly complex.

Publisher

The Royal Society

Subject

General Medicine

Reference20 articles.

1. B ak er A. W . & Shulgin A. T . 1958

2. J . A m .Chem. 80, 5358. J .A m;Chem. Soc.,1959

3. B a rn a rd D . F a b ia n J . M. & K o ch H . P . 1949 J . Chem. Soc. p. 2442.

4. J . p h ys;Chem.,1961

5. Bell R . P . & M cD ougall A. O. i960 T rans. F araday Soc. 56 1281.

Cited by 164 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3