The roles of filters in the photophores of oceanic animals and their relation to vision in the oceanic environment

Author:

Abstract

In many of the photophores found in deep-sea fishes and invertebrates, light filters containing pigments lie between the tissues that generate light and the sea. The loss of light within such filters has been measured throughout the visible spectrum for a variety of animals. These filters differ greatly in their spectral absorption characteristics and do not all contain the same pigments. All those from ventral photophores have a transmission band in the blue corresponding to the daylight that penetrates best into oceanic waters. For two fishes it is shown that the light generated inside their photophores is a relatively poor spectral match for the ambient submarine daylight while the light emitted into the sea, after passing through the filters, is a good match. For a third fish a similar improvement in ‘colour match’ is brought about not by passing the light through a filter containing pigments but by reflecting the light into the sea by a blue mirror. All these observations support the hypothesis that the ventral photophores are used for camouflage.Malacosteus nigerAyres 1848 is an oceanic fish which emits red light from a large suborbital photophore. The red light generated inside the photophore is largely absorbed by a coloured filter over its external surface which transmits only a band of light of wavelengths around 700 nm. This is a waveband which is heavily absorbed by oceanic sea water. It is shown, however, that animals that can emit and are sensitive to such far-red light will have very great advantages in being able to see without being seen. The ranges over which such red light can be useful for vision are, however, relatively small. The nature of the pigments found in these various photophores is discussed. It is also calculated that the intensities of penetrating daylight are such that visual acuity could be fairly good down to considerable depths in the mesopelagic zone.

Publisher

The Royal Society

Subject

General Medicine

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3