Shear compliance of two-dimensional pores possessing N -fold axis of rotational symmetry

Author:

Ekneligoda Thushan C1,Zimmerman Robert W12

Affiliation:

1. Division of Engineering Geology and Geophysics, Royal Institute of TechnologyStockholm 100 44, Sweden

2. Department of Earth Science and Engineering, Imperial College LondonLondon SW7 2AZ, UK

Abstract

We use the complex variable method and conformal mapping to derive a closed-form expression for the shear compliance parameters of some two-dimensional pores in an elastic material. The pores have an N -fold axis of rotational symmetry and can be represented by at most three terms in the mapping function that conformally maps the exterior of the pore into the interior of the unit circle. We validate our results against the solutions of some special cases available in the literature, and against boundary-element calculations. By extrapolation of the results for pores obtained from two and three terms of the Schwarz–Christoffel mapping function for regular polygons, we find the shear compliance of a triangle, square, pentagon and hexagon. We explicitly verify the fact that the shear compliance of a symmetric pore is independent of the orientation of the pore relative to the applied shear, for all cases except pores of fourfold symmetry. We also show that pores having fourfold symmetry, or no symmetry, will have shear compliances that vary with cos 4 θ . An approximate scaling law for the shear compliance parameter, in terms of the ratio of perimeter squared to area, is proposed and tested.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3