Re-entrant corner flows of Oldroyd-B fluids

Author:

Evans J.D1

Affiliation:

1. Department of Mathematical Sciences, University of BathBath BA2 7AY, UK

Abstract

The method of matched asymptotic expansions is used to construct solutions for the planar steady flow of Oldroyd-B fluids around re-entrant corners of angles π / α (1/2≤ α <1). Two types of similarity solutions are described for the core flow away from the walls. These correspond to the two main dominant balances of the constitutive equation, where the upper convected derivative of stress either dominates or is balanced by the upper convected derivative of the rate of strain. The former balance gives the incompressible Euler or inviscid flow equations and the latter balance the incompressible Navier–Stokes equations. The inviscid flow similarity solution for the core is that first derived by Hinch (Hinch 1993 J. Non-Newtonian Fluid Mech. 50 , 161–171) with a core stress singularity that depends upon the corner angle and radial distance as O ( r −2(1− α ) ) and a velocity behaviour that vanishes as O ( r α (3− α )−1 ). Extending the analysis of Renardy (Renardy 1995 J. Non-Newtonian Fluid Mech. 58 , 83–39), this outer solution is matched to viscometric wall behaviour for both upstream and downstream boundary layers. This structure is shown to hold for the majority of the retardation parameter range. In contrast, the similarity solution associated with the Navier–Stokes equations has a velocity behaviour O ( r λ ) where λ ∈(0,1) satisfies a nonlinear eigenvalue problem, dependent upon the corner angle and an associated Reynolds number defined in terms of the ratio of the retardation and relaxation times. This similarity solution is shown to hold as an outer solution and is matched into stress boundary layers at the walls which recover viscometric behaviour. However, the matching is restricted to values of the retardation parameter close to the relaxation parameter. In this case the leading order core stress is Newtonian with behaviour O ( r −(1− λ ) ).

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3