Affiliation:
1. Laboratoire de Modélisation en Mécanique, Université Pierre et Marie Curie4 Place Jussieu, Case 162, F-75252 Paris Cedex 05, France
Abstract
In this paper, we consider dislocations in the framework of first as well as second gradient theory of elasticity. Using the Fourier transform, rigorous analytical solutions of the two-dimensional bi-Helmholtz and Helmholtz equations are derived in closed form for the displacement, elastic distortion, plastic distortion and dislocation density of screw and edge dislocations. In our framework, it was not necessary to use boundary conditions to fix constants of the solutions. The discontinuous parts of the displacement and plastic distortion are expressed in terms of two-dimensional as well as one-dimensional Fourier-type integrals. All other fields can be written in terms of modified Bessel functions.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献