Static and dynamic novelty detection methods for jet engine health monitoring

Author:

Hayton Paul1,Utete Simukai1,King Dennis2,King Steve2,Anuzis Paul2,Tarassenko Lionel1

Affiliation:

1. Department of Engineering Science, University of OxfordOxford OX1 3PJ, UK

2. Rolls-Royce Civil Aero-EnginesDerby DE24 8BJ, UK

Abstract

Novelty detection requires models of normality to be learnt from training data known to be normal. The first model considered in this paper is a static model trained to detect novel events associated with changes in the vibration spectra recorded from a jet engine. We describe how the distribution of energy across the harmonics of a rotating shaft can be learnt by a support vector machine model of normality. The second model is a dynamic model partially learnt from data using an expectation–maximization-based method. This model uses a Kalman filter to fuse performance data in order to characterize normal engine behaviour. Deviations from normal operation are detected using the normalized innovations squared from the Kalman filter.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference23 articles.

1. Bailey V. Utete S. Bannister P. Tarassenko L. Honoré G. Ong M. & Nadeem S. 2004 The engine data store for DAME. In Proc. of the All-Hands UK e-science Meeting Nottingham September 2004 .

2. Bar-Shalom Y& Li X.-R Estimation and tracking. 1993 Artech House.

3. Boser B. E. Guyon I. M. & Vapnik V. N. 1992 A training algorithm for optimal margin classifiers. In Proc. of the 5th Annual ACM Workshop on Computational Learning Theory Pittsburgh PA pp. 144–152.

4. Chen J& Patton R.J Robust model-based fault diagnosis for dynamic systems. 1998 Boston MA:Kluwer Academic.

5. Gelb A. (ed.) 1974 Applied optimal estimation . Cambridge MA: MIT Press.

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3