Interpreting how nonlinear diffusion affects the fate of bistable populations using a discrete modelling framework

Author:

Li Yifei1,Buenzli Pascal R.1ORCID,Simpson Matthew J.1ORCID

Affiliation:

1. School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD 4001, Australia

Abstract

Understanding whether a population will survive or become extinct is a central question in population biology. One way of exploring this question is to study population dynamics using reaction–diffusion equations, where migration is usually represented as a linear diffusion term, and birth–death is represented with a nonlinear source term. While linear diffusion is most commonly employed to study migration, there are several limitations of this approach, such as the inability of linear diffusion-based models to predict a well-defined population front. One way to overcome this is to generalize the constant diffusivity, D , to a nonlinear diffusivity function D ( C ) , where C > 0 is the population density. While the choice of D ( C ) affects long-term survival or extinction of a bistable population, working solely in a continuum framework makes it difficult to understand how the choice of D ( C ) affects survival or extinction. We address this question by working with a discrete simulation model that is easy to interpret. This approach provides clear insight into how the choice of D ( C ) either encourages or suppresses population extinction relative to the classical linear diffusion model.

Funder

Australian Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Looking forwards and backwards: Dynamics and genealogies of locally regulated populations;Electronic Journal of Probability;2024-01-01

2. Exact solutions for diffusive transport on heterogeneous growing domains;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-08

3. Curvature dependences of wave propagation in reaction–diffusion models;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2022-12

4. Efficient inference and identifiability analysis for differential equation models with random parameters;PLOS Computational Biology;2022-11-28

5. From random walks on networks to nonlinear diffusion;Physical Review E;2022-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3