Critical transitions in spatial systems induced by Ornstein–Uhlenbeck noise: spatial mutual information as a precursor

Author:

Deb Smita1ORCID,Dutta Partha Sharathi1ORCID

Affiliation:

1. Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140 001, India

Abstract

Complex dynamical systems are subject to perturbations across space and time, which can induce a critical transition or tipping in the state of the system. External perturbations are often correlated in time and can interplay with the underlying nonlinearity of the spatial system, affecting the occurrence of critical transitions. Theoretical analysis of the spatial system perturbed by the Ornstein–Uhlenbeck (OU) correlated noise poses challenges beyond the white noise assumptions and is yet to be done. Here, we resort to the mean-field approximation of a spatially extended system perturbed with OU noise and obtain the stationary probability density function deriving the Fokker–Planck equation for the same. This allows us to determine the role of diffusion and noise on the resilience of the spatial system. While the theoretical analysis guides us on the landscape of tipping thresholds of the system, critical transitions customary to a variety of systems, require a priori prediction. Here, we propose a probabilistic information-based indicator—spatial mutual information—that can successfully forecast tippings, complementing the previously developed spatial indicators. Further, validating its reliability on empirical data, we show that spatial mutual information serves as a robust indicator capturing information characteristic to an imminent tipping reaching peaks in its vicinity.

Publisher

The Royal Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time-series-analysis-based detection of critical transitions in real-world non-autonomous systems;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-07-01

2. Critical transitions in spatial systems induced by Ornstein–Uhlenbeck noise: spatial mutual information as a precursor;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3